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EsƟ maƟ ng Soil Hydraulic 
ProperƟ es from Infrared 
Measurements of Soil Surface 
Temperatures and TDR Data
The spaƟ otemporal development of soil surface temperatures (SST) depends on water 
availability in the near-surface soil layer. Because the soil loses latent heat during evapora-
Ɵ on and water available for evaporaƟ on depends on soil hydraulic properƟ es (SHP), the 
temporal variability of SST should contain informaƟ on about the near-surface SHP. The 
objecƟ ve of this study was to invesƟ gate the uncertainƟ es of SHP derived from SST. The 
HYDRUS-1D code coupled with a global opƟ mizer (DREAM) was used to inversely esƟ -
mate van Genuchten–Mualem parameters from infrared-measured SST and Ɵ me domain 
refl ectometry (TDR)-measured water contents. This approach was tested using syntheƟ c 
and real data, collected during September 2008 from a harrowed silty loam fi eld plot in 
Selhausen, Germany. The syntheƟ c data illustrated that SHP can be derived from SST and 
that addiƟ onal soil water content measurements reduce the uncertainty of the esƟ mated 
SHP. Unlike for the syntheƟ c experiment with a verƟ cally homogeneous soil profi le, a 
layered soil profi le had to be assumed to derive SHP from the real data. Therefore, the 
uncertainty of SHP derived from real data was considerably larger. Water retenƟ on curves 
of undisturbed soil cores were similar to those esƟ mated from SST and TDR data for the 
deeper undisturbed soil. The retenƟ on curves derived from SST and TDR data for the har-
rowed topsoil layer were typical for a coarse-textured soil and deviated considerably from 
the retenƟ on curves of soil cores, which were typical for a fi ne-textured soil and similar to 
those from the subsoil.

AbbreviaƟ ons: MO, mulƟ objecƟ ve; SO, single objecƟ ve; SST, soil surface temperatures; TDR, Ɵ me 
domain refl ectometry.

The dynamics of soil water content at the soil surface provides important 
insights into physical processes governing the soils’ interactions with the atmosphere. Th ese 
interactions are important in a variety of models that predict soil water and energy bal-
ances and plant growth (Vereecken et al., 2008). Soil hydraulic properties are important 
controlling factors for water and energy exchange between the soil and the atmosphere 
and are required to properly simulate these processes.

Classical methods usually identify soil hydraulic properties representative for small soil 
volumes (Dane and Topp, 2002). Such measurements are costly and time consuming and 
need to be repeated for a large number of soil cores and locations, however, because soil 
hydraulic properties vary considerably in space. Th is variation is caused not only by spatial 
heterogeneities within the soil structure but also by soil compaction or soil tillage (Mapa et 
al., 1986; Murphy et al., 1993; Osunbitan et al., 2005). On the other hand, remote sensing 
techniques provide an opportunity to observe the state of the soil surface for relatively large 
areas and may thus be used to derive eff ective soil hydraulic properties at a much larger scale 
(Burke et al., 1997; Chanzy et al., 1995; Demarty et al., 2005; Das and Mohanty, 2006). 
Camillo et al. (1986) and Burke et al. (1998) used ground-based passive microwave data to 
inversely estimate soil hydraulic properties. Th ey concluded that hydraulic properties may 
be inferred from ground-based remotely sensed data if the data set covers a broad range of 
water contents from dry to wet. Additionally, Camillo et al. (1986) and Burke et al. (1997, 
1998) concluded that a short period of intensive measurements (Camillo et al. [1986] used 
3 d, Burke et al. [1998] used 15 d) was suffi  cient to derive hydraulic properties.

Several methods allow the inversion of field-measured or remotely sensed data. 
Optimization algorithms, such as the Shuffl  ed Complex Evolution algorithm developed 
at the University of Arizona (SCE-UA; Duan et al., 1992), are designed to reliably fi nd 
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the global minimum of the objective function in a space of opti-
mized parameters. Because measurements are generally error-prone, 
however, the “best” parameter set corresponding to the global min-
imum is uncertain, which may lead to a considerable uncertainty 
in the model outputs (Vrugt et al., 2003).

In previous studies, either observed soil surface temperatures 
were used to infer evapotranspiration rates (Ben-Asher et al., 
1983; Olioso et al., 1996, 1999; Mauser and Schädlich, 1998) or 
measured evaporation fl uxes were used to estimate soil hydraulic 
properties (Jhorar et al., 2002). Additionally, soil surface tem-
peratures strongly depend on the water content in the top few 
centimeters of the soil. Th is means that soil surface temperatures 
may be used to directly infer soil hydraulic properties (Demarty 
et al., 2005).

To estimate soil hydraulic properties from measured surface tem-
peratures, it is important that water and energy fl uxes, as well as 
their mutual interactions, are adequately modeled. Philip and de 
Vries (1957) pointed out that the movement of water vapor in 
the soil depends on both thermal and hydraulic gradients. Th e 
infl uence of water vapor in the soil on soil water dynamics has 
been studied in numerous works (e.g., Rose, 1968a,b; Jackson et 
al., 1973; Cahill and Parlange, 1998; Scanlon et al., 2003; Goss 
and Madlinger, 2007; Shokri et al., 2008). Th e general agreement 
in these studies is that water vapor fl uxes become more important 
for the total soil water dynamics as the soil dries out. Milly (1982), 
Kondo et al. (1990), Scanlon and Milly (1994), Saito et al. (2006), 
and Bitelli et al. (2008), among others, therefore included water 
vapor fl ow in their models to obtain improved predictions of tem-
peratures, water dynamics, and evaporation rates.

We developed a modeling approach for the inverse estimation of 
the van Genuchten–Mualem parameters of soil hydraulic proper-
ties (van Genuchten, 1980) from relatively short periods (following 
Camillo et al., 1986; Burke et al., 1998) of ground-based, remotely 
sensed, infrared-based measurements of soil surface tempera-
tures. For that purpose, the optimization algorithm was linked 
to a hydrologic model that considers coupled movement of water 
and energy (Saito et al., 2006). Th e use of a recently developed 
optimization algorithm (Vrugt et al., 2008a) allowed determina-
tion of the information content of soil surface temperatures for 
estimation of soil hydraulic parameters. In addition, we tested 
whether combining local water content measurements with soil 
surface temperatures would improve our estimates of soil hydraulic 
properties. Because subsurface hydraulic properties, and the corre-
sponding soil water dynamics, are important for water availability 
and heat transport close to the soil surface, time domain refl ec-
tometry (TDR) measurements in the 7- and 15-cm depths were 
made. Th e general applicability of the approach was fi rst tested 
using numerically generated data. Th e same approach was then also 
applied to a real data set. Th is study was conducted (i) to analyze 
the information content of soil surface temperatures for estimation 

of soil hydraulic properties with short measurement periods, (ii) 
to characterize uncertainties in soil hydraulic properties estimated 
from SST and soil water content data, and (iii) to determine the 
eff ect of soil tillage on near-surface soil hydraulic properties.

 Materials and Methods
For forward modeling, Version 3.0 of the well-tested hydrologic 
model HYDRUS-1D (Šimůnek et al., 2005, 2008) was used. Th e 
HYDRUS-1D code numerically solves the Richards equation for 
variably saturated water fl ow and convection–dispersion-type 
equations for heat transport. Th e governing equations for water 
fl ow and heat transport are solved numerically using Galerkin-type 
linear fi nite element schemes.

For inverse estimation of soil hydraulic properties, soil surface 
temperatures have to be modeled as accurately as possible. Various 
studies (e.g., de Vries, 1975; Milly, 1984; Cahill and Parlange, 1998; 
Saito et al., 2006) have pointed out that soil temperature calcula-
tions can be erroneous if thermal and isothermal water vapor fl uxes 
are neglected. Especially in the upper part of the soil profi le, which 
dries out very fast, water vapor plays a major role in the total water 
movement (Cahill and Parlange, 1998). Following the approach of 
Saito et al. (2006), we used a modifi ed HYDRUS-1D Version 3.0 
that accounts for water vapor fl ow and the eff ects of temperature 
gradients on water fl ow and uses an energy balance equation as the 
upper boundary condition for the coupled heat and water fl ow equa-
tions. Only basic equations are given below. For a comprehensive 
description, see Saito et al. (2006). Similar approaches were devel-
oped by Camillo et al. (1983), Camillo and Gurney (1986), Nassar 
and Horton (1989, 1992), and Milly (1982, 1984).

Model DescripƟ on
Liquid Water and Water Vapor Movement
Following Saito et al. (2006), the liquid water, ql (m s−1), and water 
vapor, qv (m s−1), fl uxes (expressed in terms of equivalent volumes 
of liquid water) in soils can be described as

l l l l l1h T h T
h T

q = q +q = K + K
z z

⎛ ⎞∂ ∂⎟⎜− −⎟⎜ ⎟⎜⎝ ⎠∂ ∂
 [1]

and

v v v v vh T h T
h T

q = q +q = K K
z z

∂ ∂
− −

∂ ∂
  [2]

where Klh and Kvh are the isothermal hydraulic conductivities for 
liquid water and water vapor fl uxes (m s−1), respectively, KlT and 
KvT are the thermal hydraulic conductivities for liquid water and 
water vapor fl uxes (m2 s−1 K−1), respectively, qlh and qlT are the 
isothermal and thermal liquid water fl uxes (m s−1), respectively, 
qvh and qvT are the isothermal and thermal water vapor fl uxes (m 
s−1), respectively, h is the pressure head (m), z (m) is the vertical 
coordinate, and T (K) is the temperature.
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Inserting the liquid water and water vapor f luxes into a mass 
conservation equation yields the governing equation for one-
dimensional water fl ow in variably saturated porous media, which 
describes the change in the total water content with time (Saito 
et al., 2006):

( )l l l

v v
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h T

h T
K K h K

t z z z
h T

K K
z z

⎡∂θ ∂ ∂ ∂
= ⎢ + +
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⎤∂ ∂

+ + ⎥
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 [3]

where θ is the total volumetric water content, consisting of the 
sum of the volumetric liquid water content, θ l, and the water vapor 
content, θv, (θ = θ l + θv, both expressed as a volume of liquid water 
per volume of bulk soil [m3 m−3]), and t (s) is time.

Thermal and Isothermal Water Vapor ConducƟ viƟ es
Th e thermal (KvT) water vapor hydraulic conductivity is defi ned 
as (Saito et al., 2006) 

sv
v r

w

d
dT

D
K = H

T
ρ

η
ρ

 [4]

where D is the vapor diff usivity in the soil (m2 s−1), ρw is the den-
sity of water (kg m−3), η is the enhancement factor (dimensionless) 
(Cass et al., 1984) accounting for increased thermal vapor fl uxes 
due to increased temperature gradients in the air phase, Hr is the 
relative humidity (dimensionless), and ρsv is the saturated vapor 
density (kg m−3).

The isothermal vapor hydraulic conductivity (Kvh) (m s−1) is 
defi ned as

v sv r
w

h
MgD

K = H
RT

ρ
ρ

 [5]

where M is the molecular weight of water (kg mol−1), g is the gravi-
tational acceleration (m s−2), and R is the universal gas constant 
(J mol−1 K−1).

Thermal and Isothermal Liquid Water ConducƟ viƟ es
Following Noborio et al. (1996b), the thermal hydraulic conductiv-
ity, KlT (m2 K−1 s−1), for liquid water fl ux is 

l l w
0

1 d
dT h TK = K hG
T

⎛ ⎞γ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ γ⎝ ⎠
 [6]

where Klh is the isothermal liquid hydraulic conductivity (m s−1), γ 
is the surface tension (kg s−2), γ0 is the surface tension of soil water 
at 25°C (kg s−2), and GwT (dimensionless) is a gain factor (Nimmo 
and Miller, 1986) that depends on the soil water content and the 

type of soil and accounts for temperature-induced changes in the 
soil water retention.

Th e isothermal hydraulic conductivity (Klh [m s−1]) itself is derived 
using the pore-size distribution model of Mualem (1976) from the 
analytical retention function of van Genuchten (1980):

( ) ( )
2

1/
l s e e1 1

ml m
hK h = K S S⎡ ⎤

− −⎢ ⎥⎢ ⎥⎣ ⎦
 [7]

where Ks is the saturated hydraulic conductivity (m s−1), Se is the 
eff ective saturation (dimensionless), and l and m are empirical 
parameters.

Heat Transport
Based on the mathematical model of Philip and de Vries (1957) 
and Philip (1957), the soil heat fl ux is described using 

( )h l w l v v 0 v
T

q C Tq C Tq L q
z

∂
=−λ θ + + +

∂
 [8]

where qh (J m−2 s−1) is the total heat fl ux, λ(θ l) (J m−1 s−1 K−1) 
is the apparent thermal conductivity, which is a function of the 
volumetric water content θ l, T is the temperature (K), Cw and Cv 
(J m−3 K−1) are the volumetric heat capacities for water and vapor, 
respectively, ql (m s−1) is the liquid water fl ux, qv (m s−1) is the 
water vapor fl ux, which is expressed as an equivalent volume fl ux 
of liquid water (m s−1), and L0 (J m−3) is the volumetric latent heat 
of vaporization of liquid water (Saito et al., 2006).

Combining the heat fl ux and the energy conservation equations 
yields the governing equation for heat fl ow, describing the change 
in heat storage with time: 
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where Cp (J m−3 K−1) is the heat capacity of the soil, consisting of 
the volumetric heat capacities of the liquid water, water vapor, and 
the solid phases (Saito et al., 2006).

Apparent Thermal ConducƟ vity
According to Šimůnek et al. (2005) and Hopmans et al. (2002), 
the apparent thermal conductivity, λ(θ l), can be described as a 
combination of the thermal conductivity of the porous medium 
and the macrodispersion, defi ned as a linear function of the water 
fl ow velocity: 

( ) ( )l 0 l w l= + C qλ θ λ θ β    [10]
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where β is the thermal dispersivity (m). Chung and Horton (1987) 
described the thermal conductivity, λ0(θ1), according to 

( ) 0.5
0 l 1 2 l 3 l= b +b +bλ θ θ θ   [11]

where b1, b2, and b3 are empirical parameters (W m−1 K−1).

Energy Balance Boundary CondiƟ on
Th e solution of the partial diff erential equations describing water 
and heat fl ux requires knowledge of the initial and boundary con-
ditions. For the boundary condition at the soil–air interface, the 
surface heat and water fl uxes are computed using a surface energy 
balance from measured meteorologic data (i.e., rainfall, air tem-
perature, wind speed, air humidity, and radiation) and the state 
variables T, h, and θv at the soil surface. Because the calculated 
mass and energy fl uxes, which are used as boundary conditions 
for the solution of the water and heat fl ow equations, depend on 
the soil surface state variables and thus the solution of the water 
and heat fl ow equations themselves, the surface fl uxes and state 
variables had to be derived iteratively. Two iteration loops were 
found to be a good tradeoff  between accuracy and computational 
eff ort (Saito et al., 2006).

Th e surface energy balance is given as 

net wG = R H L E− −   [12]

where G (W m−2) is the heat fl ux into the soil, Rnet is the net radia-
tion (W m−2), H is the sensible heat fl ux (W m−2), Lw is the latent 
heat of vaporization (J kg−1), and E is the evaporation rate (kg m−2 
s−1). Th e variables G and Rnet are defi ned to be positive downward 
(into the soil profi le) and LwE and H are defi ned to be positive 
upward (out of the soil profi le).

Th e net radiation, Rnet, is the sum of the net shortwave and net 
longwave radiation (sum of incoming and outgoing shortwave and 
longwave radiation) and was measured half-hourly for the duration 
of the fi eld experiment. Following van Bavel and Hillel (1976), the 
latent heat fl ux, LwE, and the sensible heat fl ux, H, from a bare soil 
can be defi ned as 

s a
w w

a
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r
−
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where ρs (kg m−3) and Ts (K) are the water vapor density and tem-
perature at the soil surface, ρa (kg m−3) is the water vapor density 
measured in the air at a certain height above the soil surface, ra (s 
m−1) is the atmospheric resistance to water vapor fl ow, Ca is the 

volumetric heat capacity of the air (J m−3 K−1), rH (s m−1) is the 
aerodynamic resistance to heat fl ow, and Ta (K) is the air tem-
perature. Because vapor fl ow in the soil is modeled as a function 
of vapor density gradients and vapor diff usivity in the soil, the 
reduction of the vapor fl ux due to resistance to vapor fl ow within 
the soil is explicitly accounted for and not parameterized as a soil 
resistance in a model that predicts vapor transfer from the soil 
surface to the atmosphere (van de Griend and Owe, 1994).

Th e energy balance equation was used to provide surface fl uxes for 
heat as well as for water (Camillo et al., 1983). Solving the energy 
balance for each time step during the numerical simulation yields 
the heat fl ux density G and the evaporation rate E, which are used 
as heat and water fl ux boundary conditions for the top of the soil 
profi le. In the case of precipitation, the sum of precipitation and 
evaporation rates is used as a fl ux boundary condition for water fl ow.

Th e calculated evaporation fl ux, E, defi nes the water and vapor fl ux 
at the soil surface: 

v l
w 0z

E q q
=

= +
ρ

   [15]

and the calculated heat fl ux, G, defi nes the heat fl ux into the soil: 

h 0zG q ==−      [16]

Th e negative sign follows from defi nitions of G and qh; fl uxes are 
positive upward and negative downward.

Th e evaporation rate, E, includes both the liquid water fl ux toward 
the soil surface, which is evaporated at the soil surface, and the 
water vapor fl ux at the soil surface. Th e total heat fl ux into the 
soil, G, comprises the conductive and convective heat fl uxes and 
the latent heat fl ux due to vapor fl ux, L0qv, in the soil profi le; G 
is written as 

0 v ,nonlatenthG L q q=− −     [17]

where qh,nonlatent is the heat f lux in the soil that is not caused by 
latent heat f low. Thus, qh,nonlatent increases (in absolute terms) 
with qv to provide energy for evaporation within the soil profile. 
In a dry soil where most of the water is evaporated within the 
soil profile and the evaporation rate approximates E ? ρwqv|z 

= 0, it follows from the surface energy balance that −qh,nonlatent 
= Rnet − H.

For a wet soil profi le, qv|z = 0 ? 0, E ? ρwql|z = 0 and −qh,nonlatent 
= Rnet − H − L0ql|z = 0. In a wet soil, the latent heat is consumed 
at the soil surface. Th us, including vapor fl ow in a soil water fl ow 
model leads to the prediction of higher soil surface temperatures 
when vapor fl ow in the soil contributes signifi cantly to the evapo-
ration rate.
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Field Measurements
Field data were collected from 15 to 26 Sept. 2008 on a bare soil 
at the Selhausen fi eld test site, near the Research Center Jülich, in 
Jülich, Germany. Th e soil at the experimental test site had been 
kept bare since September 2006 and was regularly treated with 
herbicides to prevent the accumulation of weeds. According to the 
USDA, the soil was classifi ed as a silt loam (13% sand, 70% silt, 
and 17% clay; Herbst et al., 2009). Bauer et al. (2008) measured an 
organic matter content of 2.2 to 2.5% (v/v) for the upper 20 cm of 
the soil. From the site, small undisturbed soil cores (100 cm3) were 
sampled. Water retention curves of the samples were determined 
in the laboratory using sand suction tables and pressure cells. Th e 
saturated hydraulic conductivity was derived using a constant-head 
permeameter. Th e soil hydraulic parameters, i.e., the Mualem–van 
Genuchten parameters and the saturated conductivity that were 
derived from the laboratory measurements, are given in Table 1.

We installed 72 TDR probes (two-rod TDR probes, 25-cm rod 
length, 2.3-cm spacing between the rods, 11.5-m coaxial cable 
length) at 36 locations in a fi eld plot of 36 m2 (6 by 6 m), which 
was harrowed before the installation of the TDR probes. Th e bulk 
density of the harrowed upper part of the soil (0–10 cm) was 1.35 
g cm−3 and 1.69 g cm−3 for the lower (10–90 cm), untilled part 
of the soil. Note that the bulk density of the harrowed top layer 
was considerably smaller than the bulk density of the soil samples 
that were taken from the topsoil layer of an undisturbed fi eld plot 
and from which the soil hydraulic parameters were derived in the 
laboratory (Table 1). To install the TDR probes, we excavated 
three trenches with six small pits at each side of each trench. One 
week before the start of the experiment, we horizontally installed 
two TDR probes at depths of 7 and 15 cm in each of the 36 pits. 
Because the coaxial TDR cables might disturb the infrared surface 
temperature measurements, we used the trenches to bury the cables 
(at 10-cm depths) to the TDR instruments outside the test plot. 
Before installation, all TDR probes were calibrated with water–
air measurements. Th e installed TDR probes were connected to 
a TDR 100 cable tester and the recorded waveforms were stored 
on a CR1000 data logger (both Campbell Scientifi c, Logan, UT). 
We used the PCTDR soft ware (Campbell Scientifi c) to analyze 
the waveforms for the dielectrical permittivity and the empirical 
relationship of Topp et al. (1980) to convert the dielectrical per-
mittivity to water content. Th e soil water content was monitored 
on a half-hourly basis. Additionally, at each location, soil tempera-
tures at the 3- and 6-cm depths were measured manually every 6 h 
with a TypeE thermocouple (Li 8100–201, LI-COR Biosciences, 
Lincoln, NE).

Additionally, an infrared (IR) camera (VarioCAM, Infra Tec 
GmbH, Dresden, Germany) was installed to measure the soil 
surface temperature every 5 min. Th e IR camera measures the 
brightness temperature in the spectral range from 8 to 14 μm. It 
has a resolution of 320 by 240 pixels and an absolute measure-
ment accuracy of ±1.5 K in the temperature range from −10 to 

50°C. Th e IR camera was installed on an auto hoist 11 m above 
the ground to cover the 6- by 6-m measurement plot.

During the fi eld experiment, the sky was partially covered with 
clouds, which can be seen in the net radiation data in Fig. 1. Th e 
air temperature, relative humidity (combined temperature–air 
humidity sensor CS215, Campbell Scientifi c), wind speed (CSAT3, 
Campbell Scientifi c), and net radiation (1 x SP Lite, Kipp & Zonen, 
Delft , the Netherlands) were monitored by an automatic weather 
station installed close to the test site. All meteorologic data were 
measured 2 m above the ground. Figure 1 shows the meteorologic 

Table 1. Soil hydraulic parameters† for the upper (0–10 cm) and lower 
(10–90 cm) parts of the soil profi le as determined in the laboratory 
using the sand suction table and the pressure cell method; 100-cm3 soil 
samples were taken before the harrowing of the plot in an undisturbed 
part of the soil profi le. Th e saturated hydraulic conductivity was deter-
mined using the constant-head method.

Depth θr θs α n Ks BD 

cm —— cm3 cm−3 —— cm−1 cm d−1 g cm−3

0–10 0.0000 0.3530 0.0042 1.3242 91.6800 1.6140

10–90 0.0000 0.3719 0.0690 1.2525 50.8800 1.6920

† θr and θs, residual and saturated volumetric water contents, respectively; α and n, 
shape parameters; Ks, saturated hydraulic conductivity; BD, bulk density.

Fig. 1. Meteorological data measured at the Selhausen test site during 
the fi eld experiment from 15 to 26 Sept. 2008 (Day of Year [DOY] 
259–270). Th e upper plot shows the irrigation events, the middle plot 
the wind speed (solid black line) and the relative humidity (dotted red 
line), and the lower plot the air temperature (dotted red line) and the 
net radiation (solid black line).

https://www.infratec.eu/thermography/
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standard data for the duration of the experiment. Half-hourly values 
of the meteorologic data were used as input data for the model.

ParameterizaƟ on and Inverse OpƟ mizaƟ on
A 90-cm soil profi le was discretized for numerical simulations 
into 100 fi nite elements and 101 nodes. Zero pressure head and 
temperature gradients (i.e., free drainage) were used as bottom 
boundary conditions for water fl ow and heat transport, respec-
tively. Th e energy balance and the soil surface boundary condition 
were described above. Because pressure head and temperature 
gradients increase toward the top of the soil profi le, the spatial 
discretization was gradually refi ned toward the soil surface, where 
the grid size was 0.3 cm. We used the Chung and Horton (1987) 
parameters of a loamy soil (b1 = 24.3, b2 = 39.3, b3 = 153.4, all 
W m−1 K−1) implemented in HYDRUS-1D to describe the ther-
mal properties of the soil at the test site. Th e thermal dispersivity, 
β , has not been measured often for unsaturated soils because 
it only becomes important when the water fl ux velocity is high 
(Hopmans et al., 2002). We took β = 5 cm, which is the default 
value in HYDRUS-1D. Th e initial conditions for the numerical 
simulations were derived from TDR water content measurements 
at 7-, 15-, 45-, 60-, and 90-cm depths and temperature measure-
ments at 3-, 6-, 15-, 45-, 60-, and 90-cm depths at the beginning 
of the experiment. Water contents at 45-, 60-, and 90-cm depths 
and temperatures at 15-, 4-5, 60-, and 90-cm depths were measured 
a few meters away from the experimental plot with horizontally 
installed TDR and temperature probes. Th ese measurements were 
used only to defi ne the initial conditions as well as possible but 
were not further used in the optimization process. Water content 
measurements at the 7- and 15-cm depths were used for inversion.

The Differential Evolution Adaptive Metropolis (DREAM) 
algorithm (Vrugt et al., 2008a,b) was used to estimate the van 
Genuchten–Mualem soil hydraulic parameters from measured 
soil surface temperatures and water contents and to determine 
their posterior probability distribution given the observed data set. 
Th e algorithm starts with an initial population of points within 
the possible parameter space (the a priori parameter distribution), 
which is sampled by the Latin hypercube method to eff ectively rep-
resent the parameter space with a low number of sampling points. 

Th e a priori distribution was assumed to be a uniform distribution 
with ranges of the hydraulic soil parameters that cover most soil 
types (see Table 2). Th e DREAM algorithm runs multiple Markov 
chains in parallel for diff erent starting points and every chain (a 
parent) generates new candidate points (proposals) for every single 
model evaluation. Whether or not the new candidate parameter 
sets are accepted is based on the log-likelihood of the parameter 
set given the measured data. By updating the parameter sets in 
the chains based on their log-likelihoods, the distribution of the 
parameter sets converges to the posterior distribution given the 
measured data set.

The posterior distributions of soil hydraulic parameters were 
derived for two diff erent data sets. Th e fi rst data set contained only 
SST measurements, which were spatially averaged across the fi eld 
plot. For this single-objective (SO) approach, the log-likelihood 
function lSST was defi ned as
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where Θ is a vector of model parameters (van Genuchten–Mualem 
parameters, in this case), ζ and φ are the measured initial and 
boundary conditions, respectively, ŶSST is a vector of the observed 
system behavior (in this case, the SST measurements), N denotes 
the number of SST measurements, yi,SST and ŷi,SST are the ith 
SST measurement value and the SST model prediction, respec-
tively, and σSST is the standard deviation of residuals between the 
measured and simulated soil surface temperatures for the optimal 
parameter set, i.e., for the parameter set with the greatest likeli-
hood. Th e optimal parameter set or the parameter set with the 
greatest log-likelihood does not depend on σSST; however, σSST 
determines the spreading of the posterior parameter distribution. 
Th erefore, a two-step approach was used to determine the posterior 
parameter distribution. In the fi rst step, the optimal parameter 
set was determined using a dummy value of σSST. For the optimal 
parameter set, σSST was calculated from the residuals between the 

Table 2. Th e reference set of the van Genuchten–Mualem soil hydraulic parameters† used to generate measurements for the synthetic experiment and 
the optimized values obtained using single-objective (SO) and multiobjective (MO) approaches. Numbers in parentheses are the lower and upper bands 
of the 95% confi dence interval. Th e parameter range gives the upper and lower limits allowed for each parameter during the optimization.

Measured data θr θs α n Ks

———————————  cm3 cm−3 —————————— cm−1 cm d−1

Reference parameter 0.0900 0.4000 0.0900 1.9000 10.0000

Soil surface 
temperature (SO)

0.0910 (0.0371–0.1051) 0.3838 (0.2905–0.4438) 0.1015 (0.0500–0.1908) 1.7069 (1.3283–1.9771) 8.688 (1.3489–42.4521)

Soil surface temperature 
+ water content (MO)

0.0860 (0.0582–0.0976) 0.4014 (0.3258–0.4466) 0.1063 (0.0689–0.1764) 1.8375 (1.5345–1.9882) 11.6054 (2.4394–28.7872)

Parameter range 0.000–0.150 0.250–0.450 0.003–0.200 1.100–2.000 1.00–500.00

† θr and θs, residual and saturated volumetric water contents, respectively; α and n, shape parameters; Ks, saturated hydraulic conductivity.
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modeled and measured surface temperatures (σSST = 1.95°C). Th is 
value was subsequently used to derive the posterior parameter dis-
tribution. It must be noted that σSST comprises both measurement 
and model errors.

Th e second data set contained soil surface temperature and water 
content measurements at 7- and 15-cm depths, expressed as the 
mean of the 7- and 15-cm-depth TDR measurements. A multiob-
jective optimization (MO) was used in this case, with one objective 
function defi ned using surface temperatures and the other two 
using water contents at diff erent depths. Th e log-likelihood was 
calculated for water contents measured at diff erent depths j = 7, 
15 cm as 
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where σWCj are the standard deviations of the residuals between 
the measured and simulated water contents at a depth of j = 7 
and j = 15 cm, which were calculated with the same approach as 
described for σSST. Again, the values of σWCj (0.005 cm3 cm−3 at 
a depth of 7 cm and 0.006 cm3 cm−3 at a depth of 15 cm) comprise 
both measurement and model errors.

Th e total log likelihood was obtained as 

total SST WC7 WC15l = l l l+ +  [20]

Based on the calculated likelihood of every parameter set, the 
Markov chain either moves to a new location when the likelihood 
is higher or remains at the old position when the likelihood is lower. 
Additionally, a random change in the chain’s position can occur: 

( )new oldmin exp ,1= l l⎡ ⎤α −⎣ ⎦   [21]

where α is the Metropolis acceptance probability, and lnew and 
lold represent the likelihoods of the proposal and the parent posi-
tion of the Markov chain, respectively. Equation [21] shows that a 
higher likelihood in the proposal position (lnew) than the parent 
position (lold) results in α = 1, forcing the Markov chain to move 
to the proposal position. For α < 1, a random number r is drawn 
from a uniform distribution between 0 and 1 and the chain moves 
to the proposal position if r < α . Th is Random Walk Metropolis 
method makes the DREAM optimization algorithm an effi  cient 
and robust sampler of the parameter space. For inverse modeling, 
a total of 50,000 model evaluations distributed on fi ve central pro-
cessing units was used. Th is setup resulted in approximately 2 d of 
computation time for an optimization run.

To test the ability of the DREAM algorithm to infer the van 
Genuchten–Mualem soil hydraulic parameters from soil surface 

temperature data, a synthetic experiment was performed fi rst. A 
HYDRUS-1D forward simulation with known van Genuchten–
Mualem parameters (Table 2), subsequently referred to as the 
reference parameters, was fi rst performed to generate synthetic soil 
surface temperatures and water contents at two diff erent depths. 
Th e synthetic data set was generated using the same initial and 
boundary conditions, the same meteorologic conditions, and the 
same fl ow domain as for the real Selhausen data set. A random 
error with known standard deviation (σSST = 0.75°C, σWC7 = 
0.005 cm3 cm−3, σWC15 = 0.005 cm3 cm−3) was added to the sim-
ulated data, which were then used as a synthetic measurement data 
set for the inverse optimization of the van Genuchten–Mualem 
parameters of soil hydraulic properties.

 Results and Discussion
SyntheƟ c Data Experiment
In Fig. 2, posterior probability density functions (pdfs) of the 
parameters obtained using the SO and MO approaches are 
shown. Th e horizontal axes of the plots correspond with the 
initial parameter distribution. Th e width of the posterior pdf 
compared with the width of the a priori parameter distribution 
is a measure for how strongly the posterior parameter distribu-
tion is constrained by the measurements. Th e true and optimized 
parameter sets are given in Table 2 together with the 95% confi -
dence intervals (CI95). Th e width of the posterior distributions 
or the CI95 compared with the width of the prior distributions 
(Fig. 2; Table 2) show a relatively good ability to identify the 
parameters θr and Ks. In relation to the initial a priori parameter 
ranges, confi dence intervals for parameters n, θs, and α are larger. 
Table 2 shows that both optimizations based on measurements 
of only soil surface temperatures (SO) or on measurements of 
soil surface temperatures and subsurface water contents (MO) 
produced parameter sets close to the reference parameters. Th e 
univariate posterior distributions of the optimized parameters 
do not contain information about correlations between param-
eters or clustering of parameter combinations in the parameter 
space. Instead of investigating the parameter uncertainty, the 
uncertainty intervals can also be plotted directly around the 
hydraulic functions. In Fig. 3, the optimized water retention 
curves (obtained for the optimized parameters) are shown 
together with the 95% confi dence range of water contents for 
the given pressure heads. A visual comparison of optimized soil 
water retention curves obtained with the SO and MO approaches 
(Fig. 3) illustrates that the use of additional water content mea-
surements yielded slightly better results. Th e main diff erence 
between the two approaches is the uncertainty in the optimized 
retention curves, which is clearly larger for the SO than for the 
MO approach, especially for lower pressure heads, e.g., at h = 

−1000 cm, the 95% uncertainty interval of the water content, θ, 
ranges from 0.063 to 0.131 cm3 cm−3 for the SO approach, and 
is somewhat narrower, i.e., from 0.072 to 0.106 cm3 cm−3 for 
the MO approach.
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Th e optimization results of the van Genuchten–Mualem param-
eters were then used in the HYDRUS-1D forward simulation to 
compare the modeled soil water contents and soil surface tem-
peratures with those generated using the reference parameter set. 
Figure 4 shows a comparison between the generated (using the ref-
erence parameter set) and modeled (using optimized parameters) 
soil surface temperatures and water contents. Both MO and SO 
approaches provided a similar fi t of soil surface temperatures with 
only marginal diff erences. Th e obtained root mean squared errors 
(RMSEs), 0.7425°C for SO and 0.7427°C for MO, are close to 
the random error that was added to the forward simulated tem-
peratures. Diff erences in the soil water dynamics are much more 

signifi cant. Figure 4 shows that the MO approach using measure-
ments of both soil surface temperatures and water contents yielded 
a better fi t to measured values at both depths (RMSE for 7 cm = 
0.0051 cm3 cm−3, RMSE for 15 cm = 0.0046 cm3 cm−3, which is 
close to the random error that was added to the forward simula-
tions). Parameters estimated from only soil surface temperature 
data resulted in an overestimation of soil water contents at both 
depths. Th is bias led to a larger RMSE (RMSE ? 0.01 cm3 cm−3) 
for the SO approach (Fig. 5) than the random error (0.005 cm3 
cm−3); however, the prediction of the soil water dynamics with the 
optimized parameters from the soil surface temperature measure-
ments was still reasonable (Fig. 4).

Fig. 2. Probability density functions (pdfs) of the opti-
mized van Genuchten–Mualem parameters for the 
synthetic experiment: (A) shape parameter n, (B) satu-
rated hydraulic conductivity (Ks), (C) shape parameter 
α, (D) residual volumetric water contents (θr), and (E) 
saturated volumetric water contents (θs) for the syn-
thetic experiment. Red (wide bars) histograms show the 
pdfs resulting from single-objective (SO) optimization 
(soil surface temperature data only), blue (narrow bars) 
histograms show the pdfs for a multiobjective (MO) 
optimization (soil surface temperature and water content 
data). In the upper part of every plot, the 95% confi dence 
intervals are given for the SO (upper line) and MO (lower 
line) approaches. Vertical black lines indicate the true 
parameter values.
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The synthetic experiment was designed to illustrate the use-
fulness of soil surface temperatures to derive the parameters 
of soil hydraulic properties. Th e results show that soil surface 
temperatures contain information that can be used to derive 
the parameters of soil hydraulic properties. Even though uncer-
tainties in the optimized parameters become smaller when water 
content data are used in addition to soil surface temperatures, the 
reference parameter set used to generate the synthetic measure-
ment data was reproduced reasonably well using both the SO and 
the MO approaches.

Field Data Experiment
The measured field data were used to parameterize a model 
accounting for a soil profi le with vertically uniform hydraulic 
properties. Th is assumption implies that an eff ective parameter 
set can be found representing a vertically heterogeneous soil pro-
fi le and adequately predicting soil surface temperatures and soil 

water contents at diff erent depths. Th e soil hydraulic parameters 
were optimized using the DREAM algorithm and, analogous 
to the synthetic experiment, both SO and MO approaches. Th e 
fi nal optimized values are shown in Table 3 and a priori parameter 
ranges during the optimization process are given in Table 4.

Figure 6 reveals that the two estimated parameter sets (using 
either the SO or MO approaches) cannot describe soil water 

Fig. 3. Soil water retention curves for the synthetic experiment: (A) 
the red line is the optimized water retention curve based on only soil 
surface temperature measurements (SST) and (B) the blue line is the 
optimized water retention curve based on soil surface temperature 
and water content measurements (SST + WC). Th e dashed black line 
represents the reference soil water retention curve. Th e shaded areas 
represent the 95% confi dence intervals of the water contents.

Fig. 5. Modeled tempera-
tures and water contents 
(y axis) plotted against the 
synthetic measurements (x 
axis). Th e results for param-
eters estimated inversely 
using the single-objective 
(SO) approach (from soil 
surface temperatures, SST) 
are shown in the top row. 
Th e results for parameters 
estimated inversely using 
the multiobjective (MO) 
approach (from soil surface 
temperatures combined with 
subsurface soil water con-
tents, SST + WC) are shown 
in the bottom row.

Fig. 4. (A) Soil water contents (WC) and (B) soil surface tempera-
tures (SST) calculated for Days of the Year (DOY) 259 to 270 using 
the van Genuchten–Mualem parameters estimated using the single-
objective (SO) approach (SST data, red lines) and the multiobjective 
(MO) approach (SST + WC data, blue lines). Solid and open circles 
show synthetic water contents at 7- and 15-cm depths, respectively, 
and squares denote synthetic soil surface temperatures.
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content dynamics properly. Th is is similar to the fi ndings of Yang 
et al. (2005), who showed that eff ective soil hydraulic properties 
cannot represent layered soils well. Th ey pointed out that soil 
hydraulic parameters cannot be adjusted in such a way that a lay-
ered, heterogeneous soil profi le can be approximated assuming a 
homogeneous soil profi le. Because the estimation of eff ective van 
Genuchten–Mualem hydraulic properties for a homogeneous soil 
profi le did not yield sensible results, parameter uncertainties were 
not analyzed.

Before the installation of the TDR probes, the plot was harrowed. As 
a consequence, the bulk density of the topsoil layer (1.35 g cm−3) was 
considerably lower than that of the subsoil (1.69 g cm−3), indicating 
that diff erent soil hydraulic properties would have to be assigned to 
the two layers. We therefore subdivided the soil profi le into a layer 
representing the harrowed upper part of the soil (0–10 cm) and a 
layer representing the non-harrowed subsoil (10–90-cm depth).

A sequential iterative approach was used to determine the param-
eters of the two soil layers. In the fi rst step, a homogeneous soil 
profi le was assumed. Its hydraulic properties were estimated using 
soil surface temperatures and water contents at a depth of 7 cm. 
During the second step, the soil profi le was divided into two hori-
zons, with the parameters estimated in the fi rst step assigned to 

the surface soil layer (0–10 cm) and the parameters of the subsur-
face layer (10–90 cm) derived from water content measurements 
at the 15-cm depth. Because soil surface temperatures and water 
contents are infl uenced by the hydraulic properties of both layers, 
the hydraulic properties of the individual soil layers were succes-
sively updated in subsequent steps, while keeping the parameters 
of the other layer fi xed, until the estimated hydraulic properties 
of both layers stopped changing between subsequent steps. Th e 
iterative process converged aft er three iterations. Th is approach 
represents an MO inversion because both water contents and soil 
surface temperatures were used during this parameter optimiza-
tion process. For each step, the prior distribution of the parameters 
of the soil layer of which the parameters were estimated was set to 
the initial prior distributions. For the last step, the posterior distri-
butions of the van Genuchten–Mualem soil hydraulic parameters 
for the upper part of the soil were estimated using only soil surface 
temperatures (the SO approach) and soil surface temperature and 
water content measurements at the 7-cm depth (the MO approach), 
while keeping the soil hydraulic parameters for the deeper part of 
the soil profi le constant. Except for the last step of the iteration 
process, we used the DREAM algorithm only until convergence, 

Table 4. Van Genuchten–Mualem parameter sets† and their 95% confi dence intervals of a layered soil profi le (0–10 and 10–90 cm) that were estimated 
from measured data using single-objective (SO) and multiobjective (MO) approaches. Th e soil hydraulic properties of the deeper soil layer (10–90 cm) 
were estimated iteratively using time domain refl ectometry measurements at the 15-cm depth. Numbers in parentheses are the lower and upper bands 
of the 95% confi dence interval. Th e parameter range gives the upper and lower limits allowed for each parameter during the optimization.

Depth Measured data θr θs α n Ks

cm —————————— cm3 cm−3 ————————— cm−1 cm d−1

0–10 soil surface 
temperature (SO)

0.1083 (0.0322–0.1500) 0.2811 (0.2102–0.4427) 0.1232 (0.0128–0.1916) 1.4669 (1.1971–1.9671) 16.2378 (1.0454–108.8930)

soil surface temperature 
+ water content 
(7 cm) (MO)

0.1132 (0.0732–0.1181) 0.3097 (0.2720–0.3413) 0.1862 (0.1413–0.1998) 1.8664 (1.6146–2.0000) 5.4761 (4.3361–35.7108)

10–90 water content (15 cm) 0.0538 0.3902 0.0339 1.5701 23.6872

0 –90 parameter range 0.000–0.150 0.250–0.450 0.003–0.200 1.100–2.000 1.00–500.00

† θr and θs, residual and saturated volumetric water contents, respectively; α and n, shape parameters; Ks, saturated hydraulic conductivity.

Table 3. Van Genuchten–Mualem parameter sets† of an assumed 
homogeneous soil profi le that were estimated from measured data 
using single-objective (SO) and multiobjective (MO) approaches.

Measured data θr θs α n Ks

——  cm3 cm−3 —— cm−1 cm d−1

Soil surface 
temperature (SO)

0.0904 0.3059 0.1310 1.3061 54.9872

Soil surface 
temperature + water 
content (MO)

0.1381 0.3313 0.1965 1.1962 2.8787

† θr and θs, residual and saturated volumetric water contents, respectively; α 
and n, shape parameters; Ks, saturated hydraulic conductivity.

Fig. 6. Soil water content measurements at the 15- (circles) and 
7-cm depths (fi lled dots) and predictions (lines) for Days of the Year 
(DOY) 259 to 270 assuming a homogeneous soil profi le that was 
parameterized using only soil surface temperature measurements 
(SST) and using a combination of soil surface temperatures and soil 
water content measurements (SST + WC).
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which greatly sped up computational time. Th erefore, no confi -
dence intervals for the best estimate of the hydraulic properties 
for the lower soil layer (0–90 cm) were obtained (Table 4). Th e 
focus was mainly on the upper part of the soil profi le because our 
additional modeling showed that soil surface temperatures did not 
contain suffi  cient information to infer soil water dynamics of the 
second, deeper layer of the soil profi le.

Soil hydraulic parameters estimated from fi eld-measured surface 
temperatures and from both temperatures and water contents 
(Table 4) diff er more than those estimated from the synthetic 
data. Th e best estimate of the van Genuchten–Mualem parameter 

n shows the largest diff erence between the two approaches (SO: 
n = 1.42; MO: n = 1.89). The posterior parameter distribu-
tion of n remained nearly uniform, however, indicating that n 
cannot be identifi ed with the SO approach. Th e uncertainty of 
all optimized parameters was considerably larger when only sur-
face temperatures were used, compared with the combined use 
of surface temperatures and soil water content measurements 
(e.g., CI95 for Ks with SO: 1.05–108.89 cm d−1; CI95 for Ks 
with MO: 4.34–35.71 cm d−1; Fig. 7). For the SO approach, the 
parameter uncertainty was also considerably larger than that in 
the synthetic experiment. Th e CI95 in the synthetic experiment 
calculated from the SO approach for θr ranged from 0.037 to 

Fig. 7. Probability density functions (pdfs) of the opti-
mized van Genuchten–Mualem parameters for the 
synthetic experiment: (A) shape parameter n, (B) satu-
rated hydraulic conductivity (Ks), (C) shape parameter 
α, (D) residual volumetric water contents (θr), and (E) 
saturated volumetric water contents (θs) for the 0- to 
10-cm layer for the fi eld experiment. Red (wide bars) 
histograms show the pdfs resulting from single-objective 
(SO) optimization (soil surface temperature data only), 
blue (narrow bars) histograms show the pdfs for a mul-
tiobjective (MO) optimization (soil surface temperature 
and water content data). In the upper part of every plot, 
the 95% confi dence intervals are given for the SO (upper 
red line) and MO (lower blue line) approaches.
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0.105 cm3 cm−3, whereas it ranged from 0.03 
to 0.15 cm3 cm−3 in the fi eld experiment. For 
the α and n parameters, the additional use 
of water content data led to a concentration 
of the probability mass at the upper bound-
ary of the parameter ranges. Th e value ranges 
for these parameters could not be extended 
due to numerical instabilities and unrealistic 
behavior in the model.

Water retention curves resulting from the 
best van Genuchten–Mualem parameter sets 
and their 95% confi dence intervals are shown 
in Fig. 8 for the SO and MO approaches. As 
expected, examining the posterior parameter 
distributions (Fig. 7), the uncertainty in the 
optimized retention curve was considerably 
reduced when soil water content data were considered together 
with soil surface temperature measurements in the optimization 
process. Figure 8 also compares the estimated water retention 
curves against those determined in the laboratory (Table 1). 
Both the SO- and MO-derived water retention curves for the 
surface soil layer deviated considerably from the retention curve 
determined in the laboratory. Both estimated retention curves 
are characteristic of a soil with a coarser texture (i.e., larger α 
parameter). Th e optimized retention curve for the topsoil layer 
also deviates considerably from the retention curve derived for 
the deeper soil layer, which shows more resemblance to that 
determined in the laboratory. Th is indicates larger pore sizes in 
the topsoil layer than what would normally be observed for a soil 
with this texture. Th e bulk density of the topsoil was decreased 
by harrowing at the beginning of the experiment, which may 
explain the eff ect on α . Despite the larger uncertainty of the 
SO-estimated hydraulic parameters, it is still possible to infer 
that the hydraulic properties of the disturbed topsoil layer are 
considerably diff erent from the hydraulic properties determined 
on undisturbed soil samples.

Due to the lower bulk density of the harrowed upper soil layer 
than the untilled deeper layer, the saturated hydraulic con-
ductivity and the saturated water content were expected to be 
larger for the upper soil layer; however, fi tted Ks and θ s in the 
lower soil layer were higher than in the upper soil layer (Table 
4). Th is may be due to a lack of information in the wet part of 
the water retention curve, especially for the upper layer of the 
soil (measurements at 7 cm) where measured water contents did 
not exceed values around 0.24 cm3 cm−3. As a consequence, the 
estimated saturated hydraulic conductivity and water content 
are an extrapolation of hydraulic properties that were derived 
for drier soil conditions. For aggregated or tilled soils with a con-
siderable interaggregate porosity, this extrapolation may lead to 
a considerably underestimation of the real saturated hydraulic 
conductivity and water content. A measurement period cover-
ing a wider range of dry and wet soil conditions may give better 
results concerning the saturated hydraulic conductivity and the 
saturated water content.

Figure 9 shows the water contents and surface temperatures 
simulated using parameters determined by both SO and MO 

Fig. 8. Soil water retention curves for the optimized van Genuchten–Mualem parameter sets: (A) 
optimized for the soil layer from 10 to 10 cm depth using only soil surface temperature (SST) 
measurements; (B) optimized for the soil layer from 0 to 10 cm depth using both soil surface tem-
perature and water content (SST + WC) measurements at the 7-cm depth; and (C) determined 
for the soil layer from 10 to 90 cm depth using the sand bed and the pressure plate method (dashed 
line) and optimized using time domain refl ectometry measurements (solid line) at the 15-cm 
depth. Shaded areas represent the 95% confi dence intervals in terms of water contents.

Fig. 9. (A) Soil water contents (WC) and (B) soil surface temperatures (SST) calculated using the van Genuchten–Mualem parameters estimated from 
SST (red lines) and SST + WC (blue lines) data. (B) also shows soil surface temperatures (dotted line) calculated using the soil hydraulic properties 
determined in the laboratory on undisturbed soil samples. Solid and open circles represent measured water contents at depths of 7 and 15 cm, respec-
tively, and squares denote measured soil temperatures. Measured surface temperatures and water contents are expressed as an average of all plots.
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approaches. Both approaches 
show a good agreement between 
measured and modeled water 
contents and soil surface tem-
peratures. The RMSE for the 
water content at the 7-cm depth 
is 0.012 cm3 cm−3 for the SO 
approach and 0.011 cm3 cm−3 
for the MO approach. At the 
15-cm depth, the RMSE calcu-
lated from the SO approach is 
0.0046 cm3 cm−3 and 0.0037 
cm3 cm−3 for the MO approach. 
The soil water dynamics at 
the 7-cm depth following the 
rain event around Day of Year 
(DOY) 267 of the fi eld experi-
ment were less well described, 
which probably indicates inad-
equacies of the unimodal van 
Genuchten–Mualem model.

Figure 9 also shows surface 
temperatures simulated using 
soi l  hydrau l ic para meters 
determined in the laboratory. Simulated surface temperatures 
signifi cantly underestimated peak measured temperatures, which 
shows that not only soil water dynamics but also soil surface 
temperatures strongly depend on the soil tillage.

As already noted above for the synthetic experiment, including 
soil water content measurements in the parameter estimation 
improved the fi t of the soil water dynamics (see Fig. 10); however, 
the improvement for the real data set was not as pronounced as it 
was for the synthetic experiment. Th is can be seen in the RMSE 
for the water content at, e.g., the 7-cm depth, which is reduced 
from 0.012 cm3 cm−3 for the SO approach to 0.011 cm3 cm−3 
for the MO approach. Because the optimal parameter sets that 
were obtained from the SO and MO approaches were similar, the 
reduction in the RMSE of the soil water content fi t by the MO 
approach is small (Fig. 10).

As a validation of our simulations and estimated soil hydraulic 
parameters, we determined whether soil temperatures measured 
at depths of 3 and 6 cm could be simulated properly with the 
parameterized model. Because both best parameter sets (from 
the SO and MO approaches) predicted nearly identical tem-
peratures at both depths, only soil temperatures simulated 
using the MO parameters are plotted in Fig. 11. It shows that 
modeled and measured soil temperatures are in good agreement. 
Dampening of the amplitude of the diurnal temperature varia-
tion from the soil surface to depths of 3 and 6 cm was predicted 
well by the model.

 Summary and Conclusions
Estimating soil hydraulic properties using inverse modeling of the 
informational content of the soil surface temperature was analyzed 
in this study. To quantify the constraints that soil surface tempera-
ture has on the estimation of soil hydraulic parameters, we estimated 
soil hydraulic parameters using a SO approach, which considered 
only soil surface temperatures, and a MO approach, which consid-
ered both soil surface temperatures and TDR-measured soil water 

Fig. 10. Modeled temperatures and water contents (y axis) plotted against the fi eld measurements (x axis). Th e 
results for parameters estimated inversely from soil surface temperatures (SST) are shown in the top row. Th e 
results for parameters estimated using both soil surface temperatures and soil water contents (SST + WC) are 
shown in the bottom row.

Fig. 11. Measured and simulated soil temperatures at depths of 3 
and 6 cm for Days of Year (DOY) 259 to 270. Simulated values were 
obtained with the van Genuchten–Mualem parameter set determined 
using the multiobjective approach.
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contents. A synthetic experiment showed that, although the soil 
surface temperature contains enough information to estimate soil 
hydraulic parameters, their uncertainties can be reduced by addition-
ally considering also water content measurements.

A fi eld experiment was then performed to test whether hydrau-
lic properties can be estimated using this approach under fi eld 
conditions. An attempt to fi nd eff ective soil hydraulic properties 
characterizing the entire soil profi le that could be used to describe 
fi eld-measured soil temperatures and water contents at diff erent 
depths was not successful. Th is shows that models that try to 
describe water dynamics in layered soils using a single eff ective 
hydraulic parameter set (as most land-surface models do) may 
lead to wrong predictions of soil surface states (water contents 
and temperatures) and fl uxes across the soil–atmosphere boundary, 
which are important for characterizing soil–atmosphere interac-
tions. Considering a two-layered soil profi le, it was found that the 
hydraulic properties of the soil surface layer were considerably dif-
ferent (e.g., α = 0.187 cm−1 for the MO approach) from those of 
the deeper soil (α = 0.0339 cm−1) and from the hydraulic proper-
ties derived in the laboratory on undisturbed soil columns (α = 
0.069 cm−1). Th e hydraulic properties that were optimized for the 
top layer of the silty loam soil were more typical of a coarse sandy 
soil and characterized by a high value of the α parameter of the van 
Genuchten–Mualem function. Th is indicates the important eff ect 
of soil tillage on the hydraulic properties of the soil surface layer 
and its consequences for soil–atmosphere interactions.

Because the soil surface temperature measurements did not contain 
enough information to infer the hydraulic properties of the deeper 
part of the soil profi le, we parameterized the deeper part of the soil 
using soil water contents measured using TDR probes installed at a 
depth of 15 cm. Compared with the shallow soil layer, the obtained 
water retention curves for the deeper soil layer corresponded better 
with those derived on laboratory columns. Th is indicates that soil 
surface temperature measurements should be combined with 
information about subsurface soil water contents to derive the soil 
hydraulic properties of the topsoil layer. Soil surface temperatures 
can be observed at a relatively large scale and could be used to infer 
information about the eff ects not only of spatial, but also temporal, 
variations in surface soil properties, such as those due to soil till-
age, on soil hydraulic properties and soil–atmosphere interactions. 
Th is information, however, should be combined with spatial infor-
mation about the subsurface soil water contents, which could be 
obtained using networks of soil water content sensors (Rosenbaum 
et al., 2010). How to combine these two sources of information 
at larger scales and how to address the problems involved in the 
variability of parameters at various scales requires further research.

Th e soil hydraulic parameters of the upper soil layer, inversely 
estimated only from soil surface temperature measurements, 
were associated with considerable uncertainty (e.g., CI95 for n 
= 1.33–1.98). Nevertheless, the soil hydraulic parameters and 

corresponding water retention curves that were obtained using 
only soil surface temperatures or a combination of temperature 
and soil water content measurements were similar and could 
both be distinguished from the soil hydraulic properties of the 
deeper undisturbed soil. Comparing the results obtained using 
the synthetic and real fi eld experiments indicates that synthetic 
experiments are important tools to outline the general applicability 
of a particular method but can only provide a fi rst approximation 
about the actual performance of the method under fi eld conditions. 
Considering a layered soil profi le, both parameter sets estimated 
from fi eld-measured data (using MO and SO approaches) led to 
similar predictions of near-surface soil water dynamics (RMSE for 
θ at 7 cm = 0012 cm3 cm−3 [SO approach] and 0.011 cm3 cm−3 
[MO approach]), indicating that the proposed method can be 
applied under fi eld conditions. Drying–wetting cycles are required, 
however, to derive soil hydraulic properties from soil surface tem-
perature measurements because it is not possible to relate the soil 
surface temperature to the soil hydraulic properties in dry soils 
where heat transfer is controlled by heat conduction.

Finally, the range of soil hydrologic conditions, i.e., the range of 
soil water contents and the range of boundary conditions (radia-
tion, evaporation rates, and temperatures), during our experiment 
was limited. Observations of soil surface temperatures in diff erent 
plots with diff erent soil surface structure and for a longer time 
period, containing more than one drying–wetting cycle, may con-
siderably reduce the parameter uncertainty and will be the subject 
of further research.
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