Engineering Science and Technology, an International Journal 19 (2016) 90-95

HOSTED BY

Contents lists available at ScienceDirect

Engineering Science and Technology,
an International Journal

journal homepage: http://www.elsevier.com/locate/jestch

Full Length Article

Investigation of interdiffusion and intermetallic compounds in Al-Cu
joint produced by continuous drive friction welding

@ CrossMark

Yanni Wei *?, Jinglong Li >*, Jiangtao Xiong *°, Fusheng Zhang "

a State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
b Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi'an 710072, China

ARTICLE INFO ABSTRACT

Article history:

Received 27 November 2014
Received in revised form

27 May 2015

Accepted 27 May 2015
Available online 13 August 2015

In this paper, the joints between Al and Cu bars were fabricated by continuous drive friction welding.
The microstructures and the compositions of the composites were analyzed by SEM, EDS and XRD. The
surface temperature was observed using an infrared thermographic camera. The interface tempera-
tures were suggested in the range of 648~723 K at different welding parameters. The interdiffusion between
Al and Cu atoms is extraordinarily rapid, as the interdiffusion coefficients could reach 7.8 x 10-'> m?/s.

Intermetallic phases Al,Cu and Al4Cus were identified in all samples in view of the XRD and EDS anal-
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yses. The effective Gibbs free energy change of formation model was proposed to predict the Al-Cu

compound formation at solid-state interface, and the calculation combined with kinetic factors showed

that Al,Cu (Al side) and Al4Cus (Cu side) appeared first.

© 2015, Karabuk University. Production and hosting by Elsevier B.V. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The ratio of conductivity to density is about two times greater
for Al relative to Cu. It would be attractive to replace certain Cu parts
of power transmission systems with Al when weight and cost are
design considerations [1,2]. Therefore, the joining of dissimilar ma-
terials of Al and Cu should allow a more optimized design solution
for power transmission systems. Al and Cu are incompatible metal
because they have a high affinity to each other at temperature greater
than 120 °C and produce several kinds of intermetallics on their in-
terface [3,4]. These brittle intermetallic phases have significant
influence on the manufacturability, mechanical properties, and re-
liability of the Al-Cu structures [5,6]. Therefore, to understand the
interdiffusion and intermetallic phase formation at the Al-Cu in-
terface is of both scientific and technological importance.

The interdiffusion between Al and Cu is accompanied by the in-
termetallic formation, and the interdiffusion coefficients of Al and
Cu in each of these formations are dissimilar [7]. Then the width
of the diffusion layer is related with not only diffusion time but also
the amount of each of the formations. Du et al. [8] studied the dif-
fusion of Cu in face-centered cubic Al and found that the coefficients
are Dp=6.5x 10~ m?/s, Q= 136.1 k]/mol in the temperature range
of 859~928 K. Intermetallic phase formation during solid-state
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diffusion between binary dissimilar metals is an important
phenomenon in the Al-Cu welded and bonded components, com-
posites, thin-film electronic devices. Previous study showed that
different intermetallic phases may form at the Al-Cu solid-state dif-
fusion interface in terms of the different methods and conditions
used in the experiments. Funamizu and Watanabe [3] studied the
multiphase diffusion between Cu and Al using bulk couples at
673~808 K for a maximum duration of 100 h. They reported the for-
mation of all the possible five equilibrium phases predicted by the
Al-Cu phase diagram, i.e., Al4Cuy, Al,Cus, AlsCuy, AlCu, and Al,Cu.
However, Hannech et al. [9] found that the Al,Cug was absent in the
bulk couples annealed at 698 K for 25~225 h. Moreover, in the case
of the hot roll bonded Al-Cu laminates, the formation of interme-
tallic phases was not only dependent on the temperature [10], but
also on the time as well [11]. In addition, Abbasi et al. [12] inves-
tigated the cold roll bonded Al-Cu bimetal annealed at 523 K for
1~1000 h and detected AlCus, Al;Cuy, AlCu, and AlCu at the inter-
face. However, in the friction-welded Al-Cu bimetallic joints annealed
at 573~773 K for 1~36 h, Lee et al. [13] only found two intermetal-
lic phases (AICu and Al,Cu) at the interface. As stated above, there
are several variables, such as the processing condition, annealing
temperature and holding time, that can affect the formation of the
intermetallic phases at the interface. However, there is still some
scientific confusion about the reactive phase formation between Cu
and Al that needs to be clarified. There is a consensus; the kind and
amount of the intermetallic phases are the key factors that affect
joint properties. So exploring the intermetallic phases generation
based on the atomic diffusion in the process of friction welding but
not in subsequent annealing process is necessary.
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creativecommons.org/licenses/by-nc-nd/4.0/).


mailto:lijinglg@nwpu.edu.cn
http://dx.doi.org/10.1016/j.jestch.2015.05.009
http://www.sciencedirect.com/science/journal/22150986
http://http://www.elsevier.com/locate/jestch
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jestch.2015.05.009&domain=pdf

Y. Wei et al./Engineering Science and Technology, an International Journal 19 (2016) 90-95

This study focuses on the interdiffusion and intermetallic phase
formation on Al-Cu interface fabricated by continuous drive fric-
tion welding (CDFW). The interfacial morphology and intermetallic
phases formed are examined. The sequence of the phase forma-
tion is rationalized using the effective heat of formation (EHF) model
and thermodynamic analysis. The growth kinetic of the interme-
tallic layers is determined simultaneously.

2. Experimental procedure

Commercially available bars of Cu (99.9 wt. %) and Al (99.1 wt.
%) were used. The specimens were machined with a dimension of
20 mm in welding part and 14 mm in clamping part. Before welding,
the welding faces were milled and degreased with acetone. Con-
tinuous drive friction welding studies were carried out on a
continuous drive friction welding machine of 40 kN capacity at con-
stant friction force (19.1 MPa), forge force (31.8 MPa) and speed of
rotation (1900 rpm), and different friction time as 2's, 4s, 6 s and
8 s. Friction and upset pressures can be observed on pressure in-
dicator, and the stages of the welding sequence are controlled by
solenoid valve driven by an external timer. The surface tempera-
ture on the welding joint was observed using an infrared
thermographic camera (InfraTec VarioCAM®hr head-HS) at a frame
rate of 60 fps. The weld joints were subjected to metallographic char-
acterization employing scanning electron microscopy (SEM) and
X-ray diffraction (XRD) technique.

3. Results and discussion
3.1. Welding temperature of the plastic region on welding joint

The joints processed by CDFW exhibited good bonding between
Al and Cu bars. The samples’ appearances are shown in Fig. 1. It can
be seen that Al having lower strength experienced more deforma-
tion resulting in more flash. The Cu side has no flash produced
almost. Moreover, the flash of the Al side significantly increased with
the extension of welding time.

The actual temperature of the plastic region on the Al-Cu welding
joint is usually an important parameter for the analysis of joint mi-
crostructure, interdiffusion, and intermetallic phase formation. In
this paper, the temperature of the welding interface region was
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Fig. 1. Macro structures of the welds at different parameters.

measured by the infrared thermographic camera during CDFW
process of Al-Cu bars, as shown in Fig. 2. Fig. 2a is a typical infra-
red thermal image of the welding interface region, and Fig. 2b is
the variation in the maximum surface temperature of the welding
interface region T with different welding time. It can be perceived
that the variation of the maximum surface temperature has an un-
steady stage and then become more stable, except for the welding
time 2 s which is too late to achieve stable stage. The average tem-
peratures processed by the steady stage data were 648 + 15 K,
665+ 15K, 693 +15Kand 713 + 10 K. respectively. Xiong et al. [ 14]
found that the measured average temperature and the maximum
temperature of the welding interface region T were lower than, but
close to, the welding interface temperature calculated by an ana-
lytical model, which was systematically examined by comparing the
analytical solutions with corresponding experimental results

(WS

4 6
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Fig. 2. Actual CDFW process of Al-Cu tubes: (a) The location of the welding interface region in a typical infrared thermal image, and (b) variation in the maximum surface

temperature of the welding interface region T with different welding time.
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A zone
Cu

Fig. 3. SEM micrographs of the interfacial regions at friction time: (a) 2's, (b) 4's, (c) 6 s and (d) 8 s.

obtained from the CDFW of Al tubes. Therefore, it could be deemed
to the actual temperature on the interface.

3.2. Microstructures and interdiffusion on the joint interface

Fig. 3 shows the interface microstructures of the Al-Cu joints at
different welding parameters. A continuous intermetallic com-
pound layer with a thickness of 0.7 um~10 um, parallel to the
interface, is distinctly visible between the Al and Cu bulk. The com-
pound layers all consisted of two discernible sub-layer that showed
different gray levels at different parameters. The layer closed to Cu
side is tortuous and interspersed with Cu matrix. No cracks and voids
existed in the interface. The thickness of the IMC layers increased
remarkably with the welding time.

High multiple images of the interface region A in Fig. 3a and
region B in Fig. 3d are exposed more clearly in Fig. 4. EDS analysis
was carried out to investigate the exact composition of IMC layer.

Results of EDS analysis conducted on points 1-8 in Fig. 4a and Fig. 4b
are then summarized in Table 1. The newly generated layer close
to Al side could be identified as Al,Cu in view of the atom ratio
(n(Al):n(Cu)) that is approximately equal to 2:1 in the positions of
points 1, 2, 5 and 6. And the layer close to Cu side could be iden-
tified as Al4Cuy in view of the atom ratio (n(Al):n(Cu)) that is
approximately equal to 4:9 in the positions of points 3, 4, 7 and 8.
These phases were further determined by XRD analyses, as shown
in Fig. 5. The IMC phases (Al,Cu, Al4Cus) appeared and were con-
sistent with the above-mentioned EDS analysis.

The interdiffusion between Al and Cu during CDFW process of
Al-Cu bars was very obvious. Fig. 6 shows the diffusion layer and
the EDS analysis results when the friction time was 8 s. EDS (line
canning analysis along the dotted line shown in Fig. 6a) analysis
results are shown in Fig. 6b. Linear traces of Al and Cu contents show
a relative intensity of Al and Cu. It can be seen that the width of
the diffusion layer is about 7.9 um, which contains two layers of

Fig. 4. Micrographs of IMC formed in a state of layer showing (a) enlarged view of zone A in Fig. 3a and (b) enlarged view of zone B in Fig. 3d.
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Table 1
Chemical composition of the points indicated in Fig. 4(at.%).
Point x(Al)/% x(Cu)/% n(Al):n(Cu)
1 65.65 34.35 ~2:1
2 66.29 33.71
3 31.87 68.13 ~4:9
4 29.71 70.29
5 67.12 32.88 ~2:1
6 64.67 35.33
7 29.76 70.24 ~4:9
8 26.98 73.02
T
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Fig. 5. XRD patterns taken from cross section.
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formations. The interdiffusion coefficient can be simply calculated
by x?/t, as 7.8 x 1012 m?/[s, which is three orders of magnitude com-
pared with diffusion coefficient in literature (T=713K,
Do =6.5x 10 m?[s, Q =136.1 kJ/mol, so D=6.9 x 10> m?/s) [8] and
is seven orders of magnitude compared with diffusion coefficient
under thermal equilibrium state (T=713 K, Do =1.31 x 10> m?/s,
Q=185.2 kJ/mol, so D=3.5x 107" m?/s) [15]. The interdiffusion
between Al and Cu atoms is extraordinarily rapid during the CDFW
process of Al-Cu.

3.3. Formation mechanism of interfacial phases of Al-Cu joint

During CDFW, the temperature in the friction interface of Al-
Cu joint is in the range of 648~723 K. In this temperature range, the
Al-Cu phase diagram indicates that there are five equilibrium phase,
AlCu, AlCu, AlsCuy, Al,Cus and Al4Cu,, in the temperature range
623~773 K. In this study, only Al,Cu and Al,Cug were found. But other
compounds, such as AlCu, AlsCuy, and Al,Cus, should also be formed
based on the Al-Cu phase diagram. In general, the sequence of in-
termetallic phase formation for a binary system is determined not
only by the thermodynamics but also the diffusion kinetics.

A number of models were used to predict the formation of first
phase in a binary system previously. The effective heat of forma-
tion (EHF) model developed by Pretorius et al. [16] was the latest
and most effective method used in predicting the formation of first
phase in many binary systems (like M-Al) and succeeded in pre-
dicting the formation of first phase for 15 metal-Al binary systems.
Guo et al. [17] calculated the values of the effective heat of forma-
tion, AH¢, for all the five intermetallic phases in the temperature range
673~773 K, and found that Al,Cu has the maximum negative EHF
(AH®), which was expected to form first in the diffusion zone in view
of thermodynamics combined with kinetic theory.

During the CDFW solid-state interfacial reaction, phase forma-
tion on the interface is a nonequilibrium process. It is always found
that only one or two compound phase forms at interface, which is
unlike equilibrium systems where simultaneous formation of a
mixture of phases can lead to the lowest free energy state for the
system. In this case, the effective Gibbs free energy change of for-
mation (AG,) replaced with the effective heat of formation (AH®) can
more reasonably predict the formation sequence effectively [16]. The
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Fig. 6. Qualitative analysis Cu-Al interface shown as (a) SEM image and (b) line scanning results.
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Gibbs free energy changes of formations (AG;) for Cu-Al compounds at 723K.

Species Chemical composition Limiting element AG; (J/mol) [18] AGe (723K) (kJ/mol) AGei (Ce=0.50) (kJ/mol)
Al>Cu Alps7Cug33 Al -15826.2+2.3T -14.16 -10.57
AlCu Alos50Cuos0 Cu(Al) -20496.8 + 1.6T -19.34 -19.34
Al3Cugy Alo.43Cuos7 Cu -20197.4+1.9T -18.82 -16.51
AlyCus Alg40Cupso Cu -20137.8+1.6T -18.98 -15.82
AlsCug Alp31Cug69 Cu -197071+1.6T -18.55 -13.44

effective Gibbs free energy change of formation for the i forma-
tion phase of Al-Cu interfacial reaction AG,;, is defined as:

AGQ,':AG,'X& (1)
G

where AG; is the Gibbs free energy change of formation for the i for-
mation phase, C. the effective concentration of the limiting element
at the interface and C; the concentration of the limiting element
in the compound.

In this study, the interface temperature is deemed to be about
723 K in view of the temperature measurement in section 3.1. For
example, if one considers the formation of the phase Al,Cu at 723 K,
and assumes that the effective concentration of Cu at the growth
interface is 50 at.% and Al is 50 at.%, Al is therefore the limiting
element. The Gibbs free energy change of formation (AG;) for Al,Cu
was —14 160 J/mol, which was calculated by fitting the data of AG;
at different temperatures in Yang et al. [18] study. Table 2 shows
the calculated results of the effective Gibbs free energy change of
formation (AG,;) for all Cu aluminide phases at Algs0Cugso.

Based on Eq. (1), the effective Gibbs free energy change of for-
mation of any compound for Al-Cu binary system can be calculated
as a function of the concentration of the reacting species. Such cal-
culations can be represented graphically, and the effective Gibbs free
energy change of formation diagram for the Al-Cu system, as shown
in Fig. 7. It can be seen that each phase has the most negative AG,;,
and thus the release of the most energy from the system occurs when
the interfacial actual concentration matches that of a particular phase.

According to Fig. 7, Al,Cu is expected to be the first phase in the
concentration of 0~34.8 at.% of Cu. And Al4Cus is expected to be the
first phase in 59.2~100 at.% and AlCu in 34.8~59.2 at.% according-
ly. For the Al-Cu binary system, saturated solid solutions of Al(Cu)
and Cu(Al) form on either side due to mutual diffusion. It is to be
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Fig. 7. Effective Gibbs free energy changes of formations (AGi) for Cu-Al com-
pounds under different concentrations.

noted that the solubility limit of Cu in Al is ~0.15 at.% in the tem-
perature range ~723 K, whereas the maximum solubility limit of Al
in Cu in the same temperature range is ~18 at.%. Since the solubil-
ity limit of Cu in Al is almost two orders of magnitude less than that
of Al in Cu, the Al(Cu) solid solution would expect to saturate first.
The concentration of Cu must be in the content of 0~34.8 at.%. There-
fore, Al,Cu is the first phase formation at the interface as has been
experimentally observed. With the diffusion further, the Cu (Al) solid
solution was saturated, and the Al4Cuy phase form at the Cu-
Al,Cu interface. The AlCu phase may appear as the welding time
extension. Similar results, showing that the result in Fig. 7 is correct,
were found in some other literatures and obtained by other re-
searchers. Saeid et al. [6] and Zhang et al. [ 19] investigated the friction
stir lap joints of Al-Cu and found Al,Cu and Al4Cuy on the inter-
face. The reaction temperature and time on Al-Cu interface are
approximately equivalent. Hang et al. [20] studied the growth be-
havior of Al-Cu intermetallic compounds in copper ball bonds during
isothermal aging, and confirmed that Al,Cug and Al,Cu were the main
IMC products, while a third phase is found which possibly is CuAl
According to these papers, the Al,Cu and Al,Cus were formed first,
and the CuAl phase was formed subsequently. It is consistent with
the results in Fig. 7.

4. Conclusions

The joints between Al and Cu bars were fabricated by CDFW suc-
cessfully. The microstructures and the compositions of the
composites were analyzed, and the surface temperature was ob-
served. The main conclusions are summarized as follows:

(1) The interface temperatures were suggested in the range of
648~723 K at different welding parameters in view of the mea-
sured surface maximum temperature of the welding interface
region.

(2) The Al-Cu joints processed by CDFW exhibited defect-free in-
terface. A continuous intermetallic compound layer with a
thickness of 0.7 um~10 um is distinctly visible, which con-
sisted of two discernible different gray level sub-layers.
Intermetallic phases Al,Cu and Al4Cus were identified in all
samples in view of the XRD and EDS analyses. The interdif-
fusion coefficient can be simply calculated as 7.8 x 1072 m?/s.

(3) The effective Gibbs free energy change of formation model
was used to predict the Al-Cu compound formation, and the
calculation showed that Al,Cu (Al side) and Al4Cuy (Cu side)
appeared first.
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