

User Manual

TarisIR® mini

Compact Camera

Version: October 2025

Table of Contents

1	Introduction	3
2	Product Specifications	4
2.1	Camera Models	4
2.2	Technical Data	4
2.3	Standard Lenses	5
2.4	Dimensions	5
3	Technical Description	
3.1	Components Overview	7
3.2	Scope of Delivery	
4	Specifics of TarisIR® mini – M Version	9
4.1	Dimensions and Specifications	9
4.2	Mounting of the Body	
5	Operation	10
5.1	Handling Precautions	
5.2	Adjusting the Focus	10
5.3	Camera Hardware Interfaces	12
6	Operability	13
6.1	Mechanical Test Conditions	
6.2	Climatic Test Conditions	
6.3	Electromagnetic Compatibility	15
7	GigE Interface	
7.1	Installation Instructions	
7.2	Installing WinPcap	
7.3	Configuring the Network Adapter	
7.4	Setting the IP Address	
7.5	Changing the IP Address of therisIR® mini	
7.5.1	Via the Command Interface	
7.5.2	Via GigE Vision / GenlCam API	20
8	Connection with IRBIS® 3* Software	21
9	Environmental Protection	24
10	Service	25

1 Introduction

All listed product names and trademarks remain the property of their respective owners.

Please carefully read this user manual before initial start-up. This is the only way to ensure that you are able to fully leverage the performance capability of your thermography system. Please particularly observe the notes on device safety in accordance with chapter 5.

All information provided within the framework of this user manual describes a completely equipped TarisIR® mini. Depending on the selected model and the individual customization, technical data, scope of functions and supplied accessories of your thermography system may deviate from the version described herein. Equipment-dependent features are identified accordingly by means of an * within this user manual.

As a matter of principle, the descriptions of the technical data and the specific scopes of functions and delivery in the corresponding shipping documents are decisive (order confirmation/bill of delivery).

This product is subject to further developments within the scope of technical progress.

This manual has been prepared with due care. Nevertheless, errors and omissions cannot be completely excluded. Further developments in the sense of technical progress are reserved.

No liability is assumed for damages resulting from non-observance of the information contained in this manual.

InfraTec GmbH
Infrarotsensorik und Messtechnik
Gostritzer Straße 61 – 63
01217 Dresden / GERMANY

Phone: +49 351 82876-610

Fax: +49 351 82876-543

E-mail: service@InfraTec.de
Internet: www.InfraTec.de

Note

Without the written consent of InfraTec GmbH, no part of this user manual must be reproduced or edited, copied or distributed using electronic systems in any form (print, copy, microfilm or any other procedure). Dieses Benutzerhandbuch wurde mit der gebotenen Sorgfalt erarbeitet. This user manual was developed applying due diligence. No liability shall be assumed for any damages caused by the non-observance of the information contained in this user manual. All mentioned product names and trademarks shall remain the property of their respective owners.

2 Product Specifications

2.1 Camera Models

The TarisIR® mini is available in two versions:

- Standard version: respective instructions to be found in the complete manual
- M version: specifics of this camera model see chapter 4

Fig. 1 TarisIR® mini – left M version and right standard version (examples with 13.6 mm lens)

2.2 Technical Data

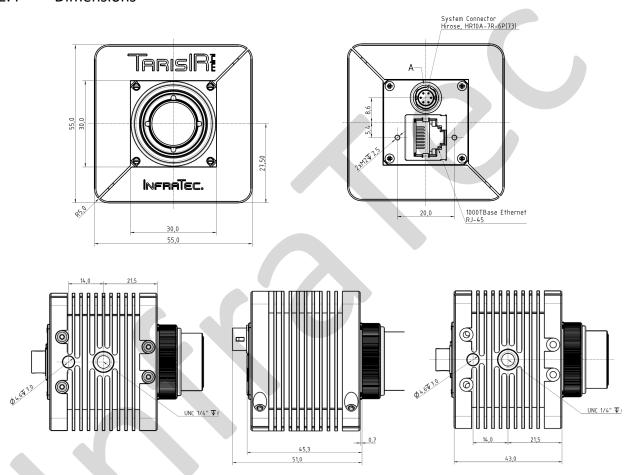
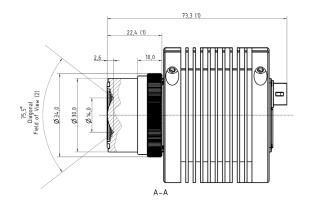
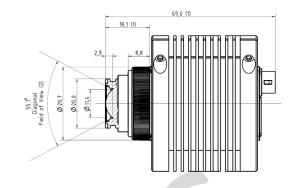
(8 14) μm
12 μm
(640 × 480)
(-40 600) °C; Range 1 (-40 120) °C, Range 2 (0 600) °C
± 2 % or ± 2 K (-10 120) °C; ± 2 % or ± 5 K (larger value) ; T _{amb} (5 35) °C
0.02 K in LowNoise mode
50 Hz or < 9 Hz
Manual
Approx. (0.25 m ∞)
16 bit
GigE vision compliant (RJ45), RS-232
2 IN/OUT; 3.3 V LVTTL
1/4" photo thread
(9 36) VDC or PoE
Approx. 2.2 W @12 V, 2.7 W @PoE
(-40 85) °C, (-40 55) °C
Relative humidity (10 95) %, not condensing
Light metal housing, IP40
(50 × 55 × 55) mm
220 g

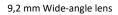
2.3 Standard Lenses

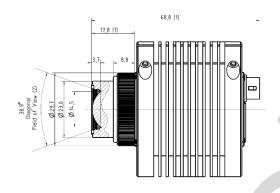
Focal length	6.2 mm	9.2 mm	13.6 mm	25 mm
Field of View (FOV)	(75 × 55)°	(50 × 37)°	(32 × 24)°	(17.6 × 13.2)°
IFOV (mrad)	1.9	1.3	0.88	0.47

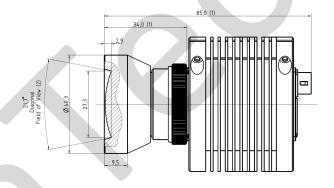
Further focal lengths are available on request. Lenses are not removeable.

2.4 Dimensions


Fig. 2: TarisIR® mini lens independent dimensions





6.2 mm Wide-angle lens

13,6 mm Standard lens

25 mm Telephoto lens

Fig. 3 TarisIR® mini with different lenses (minimal length depends on focus setting)

3 Technical Description

3.1 Components Overview

The TarisIR® mini comes with a 6-pin system Hirose connector and a RJ45 Ethernet jack.

- 1 Lens
- 2 Focus lock ring
- 3 Metal housing
- 4 RJ45 ethernet jack with 2 screw holes
- 5 6-pin system connector (Hirose)

3.2 Scope of Delivery

Component image

Designation

TarisIR® mini camera Including lens

Focus adjustment ring

(Not necessary for every lens, see "Adjusting the focus"; different designs)

RJ45 Ethernet cable

Standard length: 3m, others on request

Power supply

AC wide range power supply (100 \dots 240) for the supply of power to the GigE camera (12 V DC).

Via a primary adapter, the power supply can be used either for EU or US mains wall sockets (both adapters are included by default).

Other primary adapters on request.

Breakout cable (optional)

The breakout cable extends the single 6-pin system connector with proprietary pinout of the GigE camera to standard connectors. This way, all functions of the GigE system connector can be connected using standard equipment. The following extension connectors are provided:

- Power supply: 6-pin Hirose socket (same as on the camera)
- Control interface: D-Sub 9 socket with standard UART/RS232 pinout
- I/O ports: 2x BNC sockets

Power over Ethernet (PoE) Configuration (optional)

This powering option consists of an Ethernet cable and a power injector. This option replaces the regular power supply.

4 Specifics of TarisIR® mini – M Version

TarisIR® mini can be delivered without the heat sink. This version is specified as TarisIR® mini M. All operations are similar to the standard version. The form factor of this model and some specifications will differ as follows:

4.1 Dimensions and Specifications

Fig. 4 TarisIR® mini M

Measurement accuracy	\pm 2 % or \pm 2 K (-10 120) °C; \pm 2 % or \pm 5 K (larger value); T _{housing} (10 50) °C
Operation temperature	(-40 70) °C T _{camera housing}
Dimensions	(50 × 30 x 30) mm
Weight (without lens)	66 g

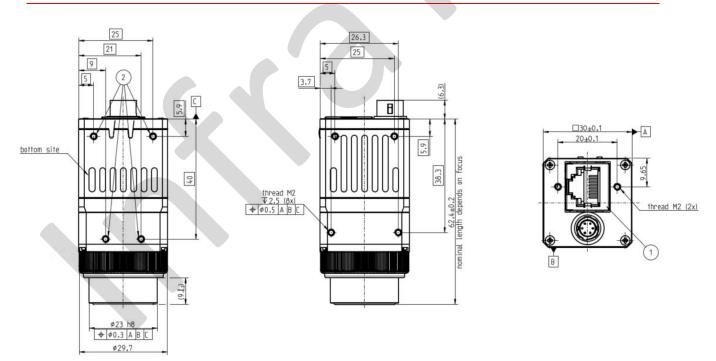


Fig. 5 TarisIR® mini M with 13.6 mm lens

4.2 Mounting of the Body

The housing of the TarisIR® mini M features 4 threaded holes M2, 2.5 mm deep (indicated as "2" in figure 21)

4 on the bottom side

4 on the side

For mounting at least two of these holes are to be used at each side.

5 Operation

5.1 Handling Precautions

Risk of damage

The TarisIR® mini camera is a high-quality, carefully calibrated optical device:

- Handle with due care
- Avoid contamination, particularly in the lens areas
- Never remove the lens or any part of the housing
- Observe the conditions for use, storage, and transportation

Detector handling precautions

The TarisIR® mini camera is equipped with a highly sensitive, uncooled microbolometer detector. The thermal radiation occurring in most common thermographic or observation tasks does not induce any damage to the detector. However, thermal radiation from objects having a temperature of approx. 1,000°C or more, or from other highly intense radiation sources, may result in detector dazzle or even damage and should be avoided. Detector dazzle from directing the camera accidentally to the sun is temporary, the detector can be expected to normalize after several hours or days.

Directing the camera into an intense laser beam may lead to irreversible damage of the detector.

- Do not direct the camera to the sun or to other highly intense radiation sources (e.g., into a laser beam), no matter whether the camera is switched off or is in operation.
- Ensure that also no direct reflections of the sun or of other highly intense radiation sources can enter the camera lens.
- Whenever the camera is not in use, cover the optical surface to protect the lens against damages.
- Never remove the lens.

The housing of the TarisIR® mini M version can heat up to over 45 °C during operation.

Detector and lens are highly sensitive components and change their behavior when the ambient conditions change. For best results, the TarisIR® mini camera should be operated in a thermally stable state. Acclimation to new ambient temperatures as well as camera warm-up after having been switched on takes several minutes. A pixel intensity drift might be noticeable even for related temperature differences below 1K. This drift is compensated by a regularly repeated Non-Uniformity-Correction (NUC).

5.2 Adjusting the Focus

Risk of damage

Any damage to the camera or lens due to incorrect focus adjustment will void the warranty.

Explanation

By default, the camera focus is set to the hyperfocal distance at the factory. This can be set manually on the lens coupling system. The focus adjustment is locked with a lock ring to prevent unexpected focus changes. There are two different adjustment options:

- Direct adjustment on the focus ring without tools (with the 25mm lens).
- Adjustment on the focus ring by using the tool focus adjustment ring (on most lenses).

Please refer to the following images for a better overview of the individual components.

Figure 6: Focus adjustment

- 1 Direction of rotation
- 2 Lens (Do not touch!)
- Focus ring with 4 pitches for focus 3 adjustment ring
- Lock ring
- Camera body

1

- Focus adjustment ring
- Camera with lens

Figure 7: Lens and focus adjustment ring

Procedure for adjusting the focus

The procedure differs slightly depending on the lens installed.

For 25 mm lens the adjustment takes place directly on the focus ring:

- Clockwise: increase distance to focus position
- Counterclockwise: decrease distance to focus position

For all other lenses please follow the steps below:

- 1. Make sure the camera's live image is visible on a monitor.
- 2. Turn the lock ring about half a turn counterclockwise to loosen the lens.
- 3. Insert the focus adjustment ring into the 4 pitches of the focus ring and rotate the focus ring to the required focus position.
 - Clockwise: increase distance to focus position
 - Counterclockwise: decrease distance to focus position
- 4. Turn the lock ring clockwise to lock the lens position.

Risk of damage

Do not loosen the focus ring by more than half a turn!
Otherwise, internal parts may come loose and fall out of the focus ring.

Do not unscrew the focus ring too far, otherwise the entire objective may become loose (or even fall out), allowing dust enter the camera.

5.3 Camera Hardware Interfaces

The two connectors on the rear side of the GigE camera are end-user interfaces.

■ RJ45 socket – GigE vision compliant interface

A standard cable or an industrial-grade robust cable may be used for interconnection. Custom Ethernet cable are available up to a maximum length of 10 m. Those could also come with fastening screws to improve connection stability, if needed.

- 6-pin Hirose circular connector for
 - DC power supply
 - 2 I/O ports (3.3 LVTTL)

The optional break-out box (see section 3.2) may be needed for interconnection.

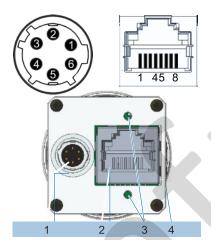


Fig. 8 Camera rear side

- 1 6-pin system Hirose connector
- 2 RJ45 ethernet jack
- 3 Screw holes for Ethernet cable
- 4 Camera body

6 Operability

6.1 Mechanical Test Conditions

The following results have been verified for the TarisIR® mini (M version):

Vibration, noisy

Test norm	DIN EN 60068-2-64, Tab. A8
Excitation	Wideband noise
Frequency	10 Hz - 2000 Hz
Load 10 Hz - 100 Hz:	4 (m/s2)2/Hz
200 Hz - 500 Hz:	8 (m/s2)2/Hz
2000 kHz:	0.5 (m/s2)2/Hz
Duration	10 minutes per axis
Axes	3
Operating mode	Unpacked, active

Vibration, sinusoidal

Test norm	DIN ISO 9022-(3)-36-06-2
Stimulation	Sinusoidal with floating frequency
Frequency	10 Hz - 2000 Hz
Load	0.15 mm / 2 g
Cycle rate	1 oct/min
Number of cycles	10 per axis
Axes	3
Operating mode	Unpacked, active

Continuous shock

Test norm	DIN ISO 9022-(3)-31-05-1
Stimulation	Semi-sinusoidal
Load	50 g / 6 ms
Number of Stocks	1000 per direction Axes 3 (6 directions)
Operating mode	Unpacked, passive

High shock

To be applied to M version camera core with 25x25mm² housing only

Test norm	DIN ISO 9022-(3) 2015-8
Stimulation	Semi-sinusoidal
Load	800 g / 1 ms
Number of stocks	1000 in z direction (optical line)
Operating mode	Unpacked, passive

6.2 Climatic Test Conditions

The following results have been verified for the TarisIR® mini (M version):

CU	u.	passive
	-,	P

Test norm	DIN ISO 9022-10-08-1
Temperature	- 40°C
Duration	16 hours
Operating mode	Unpacked, passive

Cold, active

Test norm	DIN ISO 9022-10-05-2
Temperature	See chapter 2 "Product specifications"
Duration	16 hours
Operating mode	Unpacked, active
NUC interval	2 s

Dry heat, passive

Test norm	DIN ISO 9022-11-05-1
Temperature	+ 85°C
Duration	16 hours
Operating mode	Unpacked, passive

Dry heat, active

Test norm	DIN ISO 9022-11-05-1
Temperature	See chapter 3 "Product specifications"
Duration	16 hours
Operating mode	Unpacked, active
NUC interval	2 s

Constant humid heat

Test norm	DIN ISO 9022-12-02-1
Temperature	+ 40°C
Humidity	90-95% rel. humidity
Duration	96 hours
Operating mode	Unpacked, passive

Rapid temperature change

Test norm	DIN ISO 9022-15-02-1	
Temperature	T1 = - 25°C T2 = + 40°C	
Transfer time	≤ 20 sec.	
Holding time	2.5 hours at T1 and T2	
Number of cycles	5	
Operating mode	Unpacked, passive	

6.3 Electromagnetic Compatibility

The following results have been verified for the TarisIR® mini (M version):

Test	Test norm	Target value
Emitted interference	DIN EN 61326-1	
Radio interference	DIN EN 55011	Group 1
	DIN EN 55032	Class A (VGA)
		Class B (QVGA)
Interference immunity	DIN EN 61326-1	
Electrostatic discharge	DIN EN 61000-4-2	
Electromagnetic RF fields	DIN EN 61000-4-3	0.08 – 1 GHz
		10 V/m
	DIN EN 61000-4-3	1.4 – 2.0 GHz
		3 V/m
	DIN EN 61000-4-3	2.0 – 2.7 GHz
		1 V/m

7 GigE Interface

7.1 Installation Instructions

To operate the TarisIR® mini with the GigE interface, the driver software "WinPcap" must be installed. We recommend using a GigE network card that is independent of the corporate network to control the TarisIR® mini. Depending on the Ethernet adapter used, various configuration options are available after its installation.

TarisIR® mini is compliant with GigE vision standard.

We recommend always using the internal GigE network card for the camera connection.

For camera connectivity we recommend deactivating energy saving options of the computer and the network adapter.

For the following installation, you will need administrative user rights.

7.2 Installing WinPcap

The driver software WinPcap must be installed for Ethernet interfaces. It will be automatically installed as part of the thermographic software IRBIS® installation. If the thermographic software IRBIS® is not used, a separate installation of the current version of WinPcap is needed. The auto start function of WinPcap driver needs to be selected.

After running the file "WinPcap 4 1 3.exe", follow the setup wizard by clicking "Next >".

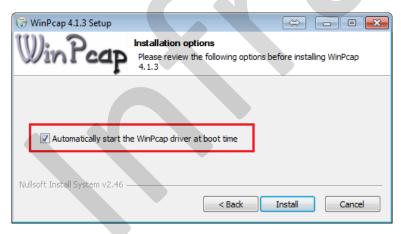
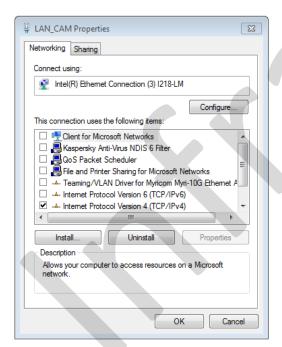


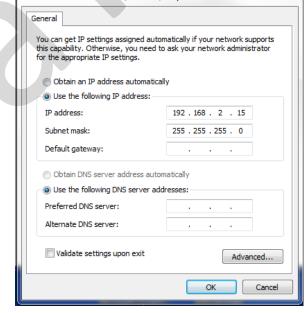
Fig. 9 Set up WinPcap Autostart

Complete the installation by clicking "Finish".

8 X

7.3 Configuring the Network Adapter


Fig. 10 Select LAN Connection


After opening the "Network and Sharing Center", select the "Change adapter settings" menu option. Select the network card to be used and right-click to open the network card properties.

7.4 Setting the IP Address

The factory default IP address of the camera is: 192.168.2.201.

Before configuring the network card for use with the camera, you must check the properties of the interface card to be used. It is important to disable unnecessary functions and assign a fixed IP address. The screenshots below provide an overview:

Internet Protocol Version 4 (TCP/IPv4) Properties

Fig. 11 LAN connection properties

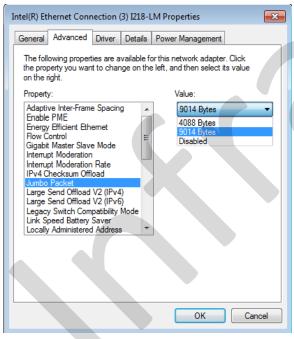
Fig. 12 Set IP address

Please note that only Internet protocol V4 is required for the Ethernet connection to the TarisIR® mini. It is recommended to disable all other components within the input mask.

By selecting the entry "Internet Protocol (TCP/IP)", you can configure the IP address of the GigE network card via the "Properties" button. This IP address can be defined within the 192.168.2.xxx range except 192.168.2.201 under the menu option "Use the following IP address" according to the specifications of your network.

You will need two unassigned network addresses during the further installation. If you have any questions in this regard, please contact your network administrator directly.

The option "**Obtain an IP address automatically**" must **not** be selected using the factory setting. If this entry is activated, the computer tries to obtain a dynamic network address from the camera system, which is visible at the corresponding network symbol in the taskbar. Connecting to the TarisIR® mini might not be not possible in this case.



If you change the IP address, you should document this change and save it in your records so as to inform the provider in case of service inquiries. It is recommended to note the changed IP address directly on the camera.

Configuring the Network Card

Inn the "LAN Connection Properties" window, you can define the network card properties via the "Configure..." button.

For an interference-free Ethernet connection to the TarisIR® mini, it is strongly recommended to activate the "Jumbo Packet" property. This function significantly reduces network load and allows loss-free data transmission even at high frame rates.

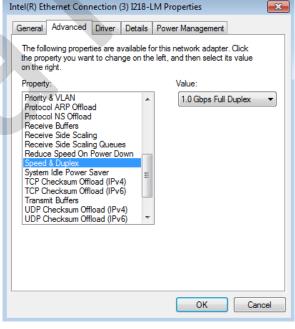


Fig. 13 Setting "Jumbo Packet"

Fig. 14 Speed and Duplex Mode

Please select the highest value (at least 4088 bytes or 4K bytes) from the list available.

Preferably select the value "1.0 Gbps Full Duplex". If this is not available, select "Auto Negotiation".

If your network card supports this option, you could also set the receive and transmit buffer of the network card to the maximum adjustable value.

© InfraTec GmbH 2025 18

7.5 Changing the IP Address of therisIR® mini

The IP address of the TarisIR® mini can be set using a command or by setting a GigEVision node using suitable GigE vision programs.

7.5.1 Via the Command Interface

Request	Command	Answer (standard setting)
IP address of the camera	?netip	!netip 192.168.2.201
Sub net mask	?netsn	!netsn 255.255.255.0
Gateway	?netgw	!netgw 192.168.2.1
Set	Command (example)	Antwort (Beispiel)
IP address of the camera	:netip 192.168.2.202	!netip 192.168.2.202
Sub net mask	:netsn 255.255.255.0	!netsn 255.255.255.0
Gateway	:netgw 192.168.2.1	!netsn 192.168.2.1

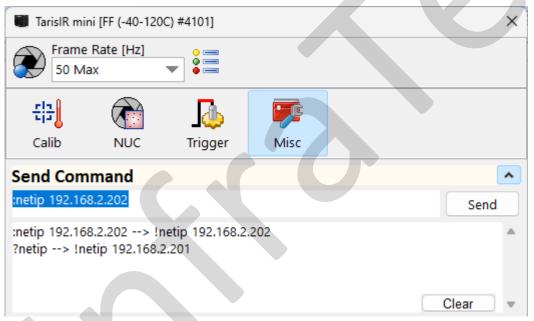


Fig. 15 Remote control window of itcamtarisirmini_winxx.dll

7.5.2 Via GigE Vision / GenlCam API

Modification via GigE Vision and GenlCam API compatible software via device control.

Anzeige aktuelle Konfiguration	GenICam node	(Standardeinstellung)
IP address of the camera	GevCurrentIPAddress	192.168.2.201
Sub net mask	GevCurrentSubnetMask	255.255.255.0
Gateway	GevCurrentDefaultGateway	192.168.2.1
Modification	GenlCam node	Modification (example)
IP address of the camera	GevPersistentIPAddress	192.168.2.202
Sub net mask	GevPersistentSubnetMask	
Gateway	GevPersistentDefaultGateway	

Fig. 16 Setting the IP address via the GenICam API node "GevPersistentIPAddress"

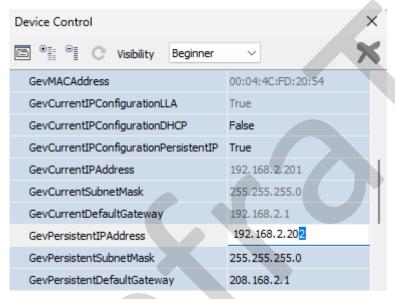


Fig. 17 Setting the IP address using the example of the external program "eBUS Player" from Pleora Technologies Inc.

Please note that a change to the IP address will only take effect after the camera has been restarted!

8 Connection with IRBIS® 3* Software

The installation and functions of the IRBIS® 3 program are described in detail in the "IRBIS® 3 – Infrared Thermography Software" manual. Therefore, only camera-specific functions are addressed here.

For the online operation of TarisIR® mini over Ethernet, additional software must be installed, and network settings must be made on the control computer (see Chapter 6.).

After starting the IRBIS® 3 program, click the "Connect" button in the "Camera" menu item to establish the camera's connection to the software. Select the camera "TarisIR® mini" from the list if you are operating multiple cameras via the software.

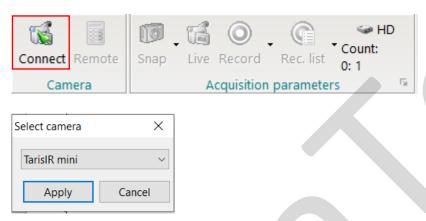


Fig. 18 IRBIS® 3 Menu "Camera" - Connection

After establishing the connection, the camera image transmitted via Ethernet is displayed live in the thermal image window. It is recommended to operate the camera exclusively via the control PC afterwards. To do this, click the "Remote Control" button in the "Camera" menu item to call up the camera-specific remote control:

Fig. 19 IRBIS® 3 – Open Camera Remote Control

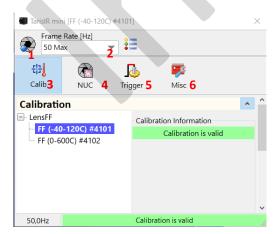


Fig. 20 Camera remote control

The remote control window will allow for setting of the most important camera functions. The ribbon items allow access to:

- 1 Manual shutter
- 2 Setting of camera frame rate (max. 50 Hz)
- 3 Calibration ranges to be selected
- 4 Shutter settings and resolution settings:

The shutter interval can be set in the following steps:

Fig. 21 Shutter options

Off: Shutter will be turned off. This setting will result in decreased measurement accuracy.

Automatic: Shutter @ 60 s

Interval: Shutter frequency can be set by user. Please keep in mind that low shutter frequencies

can influence the measurement accuracy.

The thermal resolution improvement can be set in the following steps. The "Contrast" setting though does improve the image quality displayed on the expense of the measurement accuracy:

Fig. 22 Resolution settings

5 Trigger settings:

TarisIR® mini comes with 2 configurable I/O ports for LVTTL 3.3 V. To access the ports physically additional hardware e.g. breakout cable) is needed.

Frames can be marked for later analysis in the IRBIS® software suite by an external input signal. This low-high slope (rising edge) signal can be input in either of the two I/O ports after having been selected.

Fig. 23 Input options

The I/O ports available can be configured as outputs. The following options can be selected for each available port providing a low-high slope (rising edge) output:

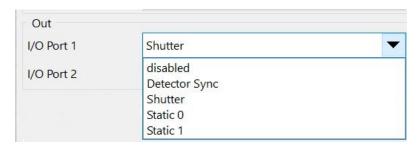


Fig. 24 Output options

- Detector Sync at the beginning of the acquisition of the very thermal image
- Shutter when starting the shutter process
- Static 0 static 0 V
- Static 1 static 3.3 V

There might be limitations in the trigger functionality for cameras with reduced frame rate (< 9Hz).

6 System information

9 Environmental Protection

TarisIR® mini is an optoelectronic device that contains special infrared optics and electronic circuit boards. These components require special disposal at the end of their service life.

The manufacturer offers to take back the TarisIR® mini product at the end of its service life to ensure environmentally friendly disposal.

Please send the device to the address listed in Chapter 10 Service.

10 Service

The manufacturer recommends having the TarisIR® mini system be serviced by customer support approximately every two years.

The manufacturer ensures service for the TarisIR® mini product.

In case of malfunctions and to perform technical maintenance, please contact your authorized distributer or customer service at the following address:

InfraTec GmbH Infrarotsensorik und Messtechnik Gostritzer Straße 61 - 63 01217 Dresden GERMANY

Phone: +49 351 82876-678
Fax: +49 351 82876-543
Email: service@InfraTec.de
Website: www.InfraTec.de

